Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

b\left(a^{3}b^{2}+a^{2}b^{3}-a-b\right)
Factor out b.
a^{2}b^{2}\left(a+b\right)-\left(a+b\right)
Consider a^{3}b^{2}+a^{2}b^{3}-a-b. Do the grouping a^{3}b^{2}+a^{2}b^{3}-a-b=\left(a^{3}b^{2}+a^{2}b^{3}\right)+\left(-a-b\right), and factor out a^{2}b^{2} in the first and -1 in the second group.
\left(a+b\right)\left(a^{2}b^{2}-1\right)
Factor out common term a+b by using distributive property.
\left(ab-1\right)\left(ab+1\right)
Consider a^{2}b^{2}-1. Rewrite a^{2}b^{2}-1 as \left(ab\right)^{2}-1^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
b\left(a+b\right)\left(ab-1\right)\left(ab+1\right)
Rewrite the complete factored expression.