Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}\left(a-3\right)-4\left(a-3\right)
Do the grouping a^{3}-3a^{2}-4a+12=\left(a^{3}-3a^{2}\right)+\left(-4a+12\right), and factor out a^{2} in the first and -4 in the second group.
\left(a-3\right)\left(a^{2}-4\right)
Factor out common term a-3 by using distributive property.
\left(a-2\right)\left(a+2\right)
Consider a^{2}-4. Rewrite a^{2}-4 as a^{2}-2^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-3\right)\left(a-2\right)\left(a+2\right)
Rewrite the complete factored expression.