Solve for x (complex solution)
x=\frac{a}{a^{2}+1}
a\neq -i\text{ and }a\neq i
Solve for x
x=\frac{a}{a^{2}+1}
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{\sqrt{1-4x^{2}}+1}{2x}\text{; }a=\frac{-\sqrt{1-4x^{2}}+1}{2x}\text{, }&x\neq 0\\a=0\text{, }&x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{\sqrt{1-4x^{2}}+1}{2x}\text{; }a=\frac{-\sqrt{1-4x^{2}}+1}{2x}\text{, }&x\neq 0\text{ and }|x|\leq \frac{1}{2}\\a=0\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
a^{2}x+x=a
Add a to both sides. Anything plus zero gives itself.
\left(a^{2}+1\right)x=a
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
a^{2}x+x=a
Add a to both sides. Anything plus zero gives itself.
\left(a^{2}+1\right)x=a
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}