Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{2}\left(b-c\right)-b^{2}\left(b-c\right)
Do the grouping a^{2}b+b^{2}c-a^{2}c-b^{3}=\left(a^{2}b-a^{2}c\right)+\left(-b^{3}+b^{2}c\right), and factor out a^{2} in the first and -b^{2} in the second group.
\left(b-c\right)\left(a^{2}-b^{2}\right)
Factor out common term b-c by using distributive property.
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)\left(b-c\right)
Rewrite the complete factored expression.