Solve for a
a=3\sqrt{5}+4\approx 10.708203932
a=4-3\sqrt{5}\approx -2.708203932
Share
Copied to clipboard
a^{2}-8a-31=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}-8a-31-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
a^{2}-8a-31-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
a^{2}-8a-29=0
Subtract -2 from -31.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-29\right)}}{2}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64+116}}{2}
Multiply -4 times -29.
a=\frac{-\left(-8\right)±\sqrt{180}}{2}
Add 64 to 116.
a=\frac{-\left(-8\right)±6\sqrt{5}}{2}
Take the square root of 180.
a=\frac{8±6\sqrt{5}}{2}
The opposite of -8 is 8.
a=\frac{6\sqrt{5}+8}{2}
Now solve the equation a=\frac{8±6\sqrt{5}}{2} when ± is plus. Add 8 to 6\sqrt{5}.
a=3\sqrt{5}+4
Divide 8+6\sqrt{5} by 2.
a=\frac{8-6\sqrt{5}}{2}
Now solve the equation a=\frac{8±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from 8.
a=4-3\sqrt{5}
Divide 8-6\sqrt{5} by 2.
a=3\sqrt{5}+4 a=4-3\sqrt{5}
The equation is now solved.
a^{2}-8a-31=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-8a-31-\left(-31\right)=-2-\left(-31\right)
Add 31 to both sides of the equation.
a^{2}-8a=-2-\left(-31\right)
Subtracting -31 from itself leaves 0.
a^{2}-8a=29
Subtract -31 from -2.
a^{2}-8a+\left(-4\right)^{2}=29+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-8a+16=29+16
Square -4.
a^{2}-8a+16=45
Add 29 to 16.
\left(a-4\right)^{2}=45
Factor a^{2}-8a+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
a-4=3\sqrt{5} a-4=-3\sqrt{5}
Simplify.
a=3\sqrt{5}+4 a=4-3\sqrt{5}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}