Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-8a-31=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}-8a-31-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
a^{2}-8a-31-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
a^{2}-8a-29=0
Subtract -2 from -31.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-29\right)}}{2}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64+116}}{2}
Multiply -4 times -29.
a=\frac{-\left(-8\right)±\sqrt{180}}{2}
Add 64 to 116.
a=\frac{-\left(-8\right)±6\sqrt{5}}{2}
Take the square root of 180.
a=\frac{8±6\sqrt{5}}{2}
The opposite of -8 is 8.
a=\frac{6\sqrt{5}+8}{2}
Now solve the equation a=\frac{8±6\sqrt{5}}{2} when ± is plus. Add 8 to 6\sqrt{5}.
a=3\sqrt{5}+4
Divide 8+6\sqrt{5} by 2.
a=\frac{8-6\sqrt{5}}{2}
Now solve the equation a=\frac{8±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from 8.
a=4-3\sqrt{5}
Divide 8-6\sqrt{5} by 2.
a=3\sqrt{5}+4 a=4-3\sqrt{5}
The equation is now solved.
a^{2}-8a-31=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-8a-31-\left(-31\right)=-2-\left(-31\right)
Add 31 to both sides of the equation.
a^{2}-8a=-2-\left(-31\right)
Subtracting -31 from itself leaves 0.
a^{2}-8a=29
Subtract -31 from -2.
a^{2}-8a+\left(-4\right)^{2}=29+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-8a+16=29+16
Square -4.
a^{2}-8a+16=45
Add 29 to 16.
\left(a-4\right)^{2}=45
Factor a^{2}-8a+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
a-4=3\sqrt{5} a-4=-3\sqrt{5}
Simplify.
a=3\sqrt{5}+4 a=4-3\sqrt{5}
Add 4 to both sides of the equation.