Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a\left(a-4\right)=0
Factor out a.
a=0 a=4
To find equation solutions, solve a=0 and a-4=0.
a^{2}-4a=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±4}{2}
Take the square root of \left(-4\right)^{2}.
a=\frac{4±4}{2}
The opposite of -4 is 4.
a=\frac{8}{2}
Now solve the equation a=\frac{4±4}{2} when ± is plus. Add 4 to 4.
a=4
Divide 8 by 2.
a=\frac{0}{2}
Now solve the equation a=\frac{4±4}{2} when ± is minus. Subtract 4 from 4.
a=0
Divide 0 by 2.
a=4 a=0
The equation is now solved.
a^{2}-4a=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=4
Square -2.
\left(a-2\right)^{2}=4
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-2=2 a-2=-2
Simplify.
a=4 a=0
Add 2 to both sides of the equation.