Solve for a
a = \frac{5 \sqrt{97} + 35}{2} \approx 42.122144504
a=\frac{35-5\sqrt{97}}{2}\approx -7.122144504
Share
Copied to clipboard
a^{2}-35a=300
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}-35a-300=300-300
Subtract 300 from both sides of the equation.
a^{2}-35a-300=0
Subtracting 300 from itself leaves 0.
a=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\left(-300\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -35 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-35\right)±\sqrt{1225-4\left(-300\right)}}{2}
Square -35.
a=\frac{-\left(-35\right)±\sqrt{1225+1200}}{2}
Multiply -4 times -300.
a=\frac{-\left(-35\right)±\sqrt{2425}}{2}
Add 1225 to 1200.
a=\frac{-\left(-35\right)±5\sqrt{97}}{2}
Take the square root of 2425.
a=\frac{35±5\sqrt{97}}{2}
The opposite of -35 is 35.
a=\frac{5\sqrt{97}+35}{2}
Now solve the equation a=\frac{35±5\sqrt{97}}{2} when ± is plus. Add 35 to 5\sqrt{97}.
a=\frac{35-5\sqrt{97}}{2}
Now solve the equation a=\frac{35±5\sqrt{97}}{2} when ± is minus. Subtract 5\sqrt{97} from 35.
a=\frac{5\sqrt{97}+35}{2} a=\frac{35-5\sqrt{97}}{2}
The equation is now solved.
a^{2}-35a=300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-35a+\left(-\frac{35}{2}\right)^{2}=300+\left(-\frac{35}{2}\right)^{2}
Divide -35, the coefficient of the x term, by 2 to get -\frac{35}{2}. Then add the square of -\frac{35}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-35a+\frac{1225}{4}=300+\frac{1225}{4}
Square -\frac{35}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-35a+\frac{1225}{4}=\frac{2425}{4}
Add 300 to \frac{1225}{4}.
\left(a-\frac{35}{2}\right)^{2}=\frac{2425}{4}
Factor a^{2}-35a+\frac{1225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{35}{2}\right)^{2}}=\sqrt{\frac{2425}{4}}
Take the square root of both sides of the equation.
a-\frac{35}{2}=\frac{5\sqrt{97}}{2} a-\frac{35}{2}=-\frac{5\sqrt{97}}{2}
Simplify.
a=\frac{5\sqrt{97}+35}{2} a=\frac{35-5\sqrt{97}}{2}
Add \frac{35}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}