Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-23a=112
Subtract 23a from both sides.
a^{2}-23a-112=0
Subtract 112 from both sides.
a=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\left(-112\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -23 for b, and -112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-23\right)±\sqrt{529-4\left(-112\right)}}{2}
Square -23.
a=\frac{-\left(-23\right)±\sqrt{529+448}}{2}
Multiply -4 times -112.
a=\frac{-\left(-23\right)±\sqrt{977}}{2}
Add 529 to 448.
a=\frac{23±\sqrt{977}}{2}
The opposite of -23 is 23.
a=\frac{\sqrt{977}+23}{2}
Now solve the equation a=\frac{23±\sqrt{977}}{2} when ± is plus. Add 23 to \sqrt{977}.
a=\frac{23-\sqrt{977}}{2}
Now solve the equation a=\frac{23±\sqrt{977}}{2} when ± is minus. Subtract \sqrt{977} from 23.
a=\frac{\sqrt{977}+23}{2} a=\frac{23-\sqrt{977}}{2}
The equation is now solved.
a^{2}-23a=112
Subtract 23a from both sides.
a^{2}-23a+\left(-\frac{23}{2}\right)^{2}=112+\left(-\frac{23}{2}\right)^{2}
Divide -23, the coefficient of the x term, by 2 to get -\frac{23}{2}. Then add the square of -\frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-23a+\frac{529}{4}=112+\frac{529}{4}
Square -\frac{23}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-23a+\frac{529}{4}=\frac{977}{4}
Add 112 to \frac{529}{4}.
\left(a-\frac{23}{2}\right)^{2}=\frac{977}{4}
Factor a^{2}-23a+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{23}{2}\right)^{2}}=\sqrt{\frac{977}{4}}
Take the square root of both sides of the equation.
a-\frac{23}{2}=\frac{\sqrt{977}}{2} a-\frac{23}{2}=-\frac{\sqrt{977}}{2}
Simplify.
a=\frac{\sqrt{977}+23}{2} a=\frac{23-\sqrt{977}}{2}
Add \frac{23}{2} to both sides of the equation.