Solve for a
a=2\sqrt{2}\approx 2.828427125
a=-2\sqrt{2}\approx -2.828427125
Share
Copied to clipboard
2a^{2}=4^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}=16
Calculate 4 to the power of 2 and get 16.
a^{2}=\frac{16}{2}
Divide both sides by 2.
a^{2}=8
Divide 16 by 2 to get 8.
a=2\sqrt{2} a=-2\sqrt{2}
Take the square root of both sides of the equation.
2a^{2}=4^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}=16
Calculate 4 to the power of 2 and get 16.
2a^{2}-16=0
Subtract 16 from both sides.
a=\frac{0±\sqrt{0^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 2\left(-16\right)}}{2\times 2}
Square 0.
a=\frac{0±\sqrt{-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{0±\sqrt{128}}{2\times 2}
Multiply -8 times -16.
a=\frac{0±8\sqrt{2}}{2\times 2}
Take the square root of 128.
a=\frac{0±8\sqrt{2}}{4}
Multiply 2 times 2.
a=2\sqrt{2}
Now solve the equation a=\frac{0±8\sqrt{2}}{4} when ± is plus.
a=-2\sqrt{2}
Now solve the equation a=\frac{0±8\sqrt{2}}{4} when ± is minus.
a=2\sqrt{2} a=-2\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}