Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+3a-60=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-3±\sqrt{3^{2}-4\times 1\left(-60\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 3 for b, and -60 for c in the quadratic formula.
a=\frac{-3±\sqrt{249}}{2}
Do the calculations.
a=\frac{\sqrt{249}-3}{2} a=\frac{-\sqrt{249}-3}{2}
Solve the equation a=\frac{-3±\sqrt{249}}{2} when ± is plus and when ± is minus.
\left(a-\frac{\sqrt{249}-3}{2}\right)\left(a-\frac{-\sqrt{249}-3}{2}\right)>0
Rewrite the inequality by using the obtained solutions.
a-\frac{\sqrt{249}-3}{2}<0 a-\frac{-\sqrt{249}-3}{2}<0
For the product to be positive, a-\frac{\sqrt{249}-3}{2} and a-\frac{-\sqrt{249}-3}{2} have to be both negative or both positive. Consider the case when a-\frac{\sqrt{249}-3}{2} and a-\frac{-\sqrt{249}-3}{2} are both negative.
a<\frac{-\sqrt{249}-3}{2}
The solution satisfying both inequalities is a<\frac{-\sqrt{249}-3}{2}.
a-\frac{-\sqrt{249}-3}{2}>0 a-\frac{\sqrt{249}-3}{2}>0
Consider the case when a-\frac{\sqrt{249}-3}{2} and a-\frac{-\sqrt{249}-3}{2} are both positive.
a>\frac{\sqrt{249}-3}{2}
The solution satisfying both inequalities is a>\frac{\sqrt{249}-3}{2}.
a<\frac{-\sqrt{249}-3}{2}\text{; }a>\frac{\sqrt{249}-3}{2}
The final solution is the union of the obtained solutions.