Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+15a-2500=0a^{2}
Multiply 0 and 8 to get 0.
a^{2}+15a-2500=0
Anything times zero gives zero.
a=\frac{-15±\sqrt{15^{2}-4\left(-2500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 15 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-15±\sqrt{225-4\left(-2500\right)}}{2}
Square 15.
a=\frac{-15±\sqrt{225+10000}}{2}
Multiply -4 times -2500.
a=\frac{-15±\sqrt{10225}}{2}
Add 225 to 10000.
a=\frac{-15±5\sqrt{409}}{2}
Take the square root of 10225.
a=\frac{5\sqrt{409}-15}{2}
Now solve the equation a=\frac{-15±5\sqrt{409}}{2} when ± is plus. Add -15 to 5\sqrt{409}.
a=\frac{-5\sqrt{409}-15}{2}
Now solve the equation a=\frac{-15±5\sqrt{409}}{2} when ± is minus. Subtract 5\sqrt{409} from -15.
a=\frac{5\sqrt{409}-15}{2} a=\frac{-5\sqrt{409}-15}{2}
The equation is now solved.
a^{2}+15a-2500=0a^{2}
Multiply 0 and 8 to get 0.
a^{2}+15a-2500=0
Anything times zero gives zero.
a^{2}+15a=2500
Add 2500 to both sides. Anything plus zero gives itself.
a^{2}+15a+\left(\frac{15}{2}\right)^{2}=2500+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+15a+\frac{225}{4}=2500+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+15a+\frac{225}{4}=\frac{10225}{4}
Add 2500 to \frac{225}{4}.
\left(a+\frac{15}{2}\right)^{2}=\frac{10225}{4}
Factor a^{2}+15a+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{15}{2}\right)^{2}}=\sqrt{\frac{10225}{4}}
Take the square root of both sides of the equation.
a+\frac{15}{2}=\frac{5\sqrt{409}}{2} a+\frac{15}{2}=-\frac{5\sqrt{409}}{2}
Simplify.
a=\frac{5\sqrt{409}-15}{2} a=\frac{-5\sqrt{409}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.