Solve for a
a=-5
a=12
Share
Copied to clipboard
a^{2}+49-14a+a^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-a\right)^{2}.
2a^{2}+49-14a=169
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+49-14a-169=0
Subtract 169 from both sides.
2a^{2}-120-14a=0
Subtract 169 from 49 to get -120.
a^{2}-60-7a=0
Divide both sides by 2.
a^{2}-7a-60=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=1\left(-60\right)=-60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba-60. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-12 b=5
The solution is the pair that gives sum -7.
\left(a^{2}-12a\right)+\left(5a-60\right)
Rewrite a^{2}-7a-60 as \left(a^{2}-12a\right)+\left(5a-60\right).
a\left(a-12\right)+5\left(a-12\right)
Factor out a in the first and 5 in the second group.
\left(a-12\right)\left(a+5\right)
Factor out common term a-12 by using distributive property.
a=12 a=-5
To find equation solutions, solve a-12=0 and a+5=0.
a^{2}+49-14a+a^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-a\right)^{2}.
2a^{2}+49-14a=169
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+49-14a-169=0
Subtract 169 from both sides.
2a^{2}-120-14a=0
Subtract 169 from 49 to get -120.
2a^{2}-14a-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-120\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -14 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-120\right)}}{2\times 2}
Square -14.
a=\frac{-\left(-14\right)±\sqrt{196-8\left(-120\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-14\right)±\sqrt{196+960}}{2\times 2}
Multiply -8 times -120.
a=\frac{-\left(-14\right)±\sqrt{1156}}{2\times 2}
Add 196 to 960.
a=\frac{-\left(-14\right)±34}{2\times 2}
Take the square root of 1156.
a=\frac{14±34}{2\times 2}
The opposite of -14 is 14.
a=\frac{14±34}{4}
Multiply 2 times 2.
a=\frac{48}{4}
Now solve the equation a=\frac{14±34}{4} when ± is plus. Add 14 to 34.
a=12
Divide 48 by 4.
a=-\frac{20}{4}
Now solve the equation a=\frac{14±34}{4} when ± is minus. Subtract 34 from 14.
a=-5
Divide -20 by 4.
a=12 a=-5
The equation is now solved.
a^{2}+49-14a+a^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-a\right)^{2}.
2a^{2}+49-14a=169
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-14a=169-49
Subtract 49 from both sides.
2a^{2}-14a=120
Subtract 49 from 169 to get 120.
\frac{2a^{2}-14a}{2}=\frac{120}{2}
Divide both sides by 2.
a^{2}+\left(-\frac{14}{2}\right)a=\frac{120}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-7a=\frac{120}{2}
Divide -14 by 2.
a^{2}-7a=60
Divide 120 by 2.
a^{2}-7a+\left(-\frac{7}{2}\right)^{2}=60+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-7a+\frac{49}{4}=60+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-7a+\frac{49}{4}=\frac{289}{4}
Add 60 to \frac{49}{4}.
\left(a-\frac{7}{2}\right)^{2}=\frac{289}{4}
Factor a^{2}-7a+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{7}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
a-\frac{7}{2}=\frac{17}{2} a-\frac{7}{2}=-\frac{17}{2}
Simplify.
a=12 a=-5
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}