Solve for a
a\in \begin{bmatrix}0,2\end{bmatrix}
Share
Copied to clipboard
a^{2}+4-4a+a^{2}-2a-2\left(2-a\right)\leq 0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-a\right)^{2}.
2a^{2}+4-4a-2a-2\left(2-a\right)\leq 0
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+4-6a-2\left(2-a\right)\leq 0
Combine -4a and -2a to get -6a.
2a^{2}+4-6a-4+2a\leq 0
Use the distributive property to multiply -2 by 2-a.
2a^{2}-6a+2a\leq 0
Subtract 4 from 4 to get 0.
2a^{2}-4a\leq 0
Combine -6a and 2a to get -4a.
2a\left(a-2\right)\leq 0
Factor out a.
a\geq 0 a-2\leq 0
For the product to be ≤0, one of the values a and a-2 has to be ≥0 and the other has to be ≤0. Consider the case when a\geq 0 and a-2\leq 0.
a\in \begin{bmatrix}0,2\end{bmatrix}
The solution satisfying both inequalities is a\in \left[0,2\right].
a-2\geq 0 a\leq 0
Consider the case when a\leq 0 and a-2\geq 0.
a\in \emptyset
This is false for any a.
a\in \begin{bmatrix}0,2\end{bmatrix}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}