Solve for a
a=\frac{-\sqrt{3}-\sqrt{15}}{2}\approx -2.802517077
a = \frac{\sqrt{3} + \sqrt{15}}{2} \approx 2.802517077
a = \frac{\sqrt{15} - \sqrt{3}}{2} \approx 1.070466269
a=\frac{\sqrt{3}-\sqrt{15}}{2}\approx -1.070466269
Share
Copied to clipboard
a^{2}a^{2}+9=9a^{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a^{2}.
a^{4}+9=9a^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{4}+9-9a^{2}=0
Subtract 9a^{2} from both sides.
t^{2}-9t+9=0
Substitute t for a^{2}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 1\times 9}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -9 for b, and 9 for c in the quadratic formula.
t=\frac{9±3\sqrt{5}}{2}
Do the calculations.
t=\frac{3\sqrt{5}+9}{2} t=\frac{9-3\sqrt{5}}{2}
Solve the equation t=\frac{9±3\sqrt{5}}{2} when ± is plus and when ± is minus.
a=\frac{\sqrt{3}+\sqrt{15}}{2} a=-\frac{\sqrt{3}+\sqrt{15}}{2} a=-\frac{\sqrt{3}-\sqrt{15}}{2} a=\frac{\sqrt{3}-\sqrt{15}}{2}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}