Solve for a
a=2
a=0
Quiz
Polynomial
5 problems similar to:
a ^ { 2 } + \frac { 9 } { 4 } = ( 2 a - \frac { 3 } { 2 } ) ^ { 2 }
Share
Copied to clipboard
a^{2}+\frac{9}{4}=4a^{2}-6a+\frac{9}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-\frac{3}{2}\right)^{2}.
a^{2}+\frac{9}{4}-4a^{2}=-6a+\frac{9}{4}
Subtract 4a^{2} from both sides.
-3a^{2}+\frac{9}{4}=-6a+\frac{9}{4}
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+\frac{9}{4}+6a=\frac{9}{4}
Add 6a to both sides.
-3a^{2}+\frac{9}{4}+6a-\frac{9}{4}=0
Subtract \frac{9}{4} from both sides.
-3a^{2}+6a=0
Subtract \frac{9}{4} from \frac{9}{4} to get 0.
a\left(-3a+6\right)=0
Factor out a.
a=0 a=2
To find equation solutions, solve a=0 and -3a+6=0.
a^{2}+\frac{9}{4}=4a^{2}-6a+\frac{9}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-\frac{3}{2}\right)^{2}.
a^{2}+\frac{9}{4}-4a^{2}=-6a+\frac{9}{4}
Subtract 4a^{2} from both sides.
-3a^{2}+\frac{9}{4}=-6a+\frac{9}{4}
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+\frac{9}{4}+6a=\frac{9}{4}
Add 6a to both sides.
-3a^{2}+\frac{9}{4}+6a-\frac{9}{4}=0
Subtract \frac{9}{4} from both sides.
-3a^{2}+6a=0
Subtract \frac{9}{4} from \frac{9}{4} to get 0.
a=\frac{-6±\sqrt{6^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-6±6}{2\left(-3\right)}
Take the square root of 6^{2}.
a=\frac{-6±6}{-6}
Multiply 2 times -3.
a=\frac{0}{-6}
Now solve the equation a=\frac{-6±6}{-6} when ± is plus. Add -6 to 6.
a=0
Divide 0 by -6.
a=-\frac{12}{-6}
Now solve the equation a=\frac{-6±6}{-6} when ± is minus. Subtract 6 from -6.
a=2
Divide -12 by -6.
a=0 a=2
The equation is now solved.
a^{2}+\frac{9}{4}=4a^{2}-6a+\frac{9}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-\frac{3}{2}\right)^{2}.
a^{2}+\frac{9}{4}-4a^{2}=-6a+\frac{9}{4}
Subtract 4a^{2} from both sides.
-3a^{2}+\frac{9}{4}=-6a+\frac{9}{4}
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+\frac{9}{4}+6a=\frac{9}{4}
Add 6a to both sides.
-3a^{2}+6a=\frac{9}{4}-\frac{9}{4}
Subtract \frac{9}{4} from both sides.
-3a^{2}+6a=0
Subtract \frac{9}{4} from \frac{9}{4} to get 0.
\frac{-3a^{2}+6a}{-3}=\frac{0}{-3}
Divide both sides by -3.
a^{2}+\frac{6}{-3}a=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-2a=\frac{0}{-3}
Divide 6 by -3.
a^{2}-2a=0
Divide 0 by -3.
a^{2}-2a+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(a-1\right)^{2}=1
Factor a^{2}-2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
a-1=1 a-1=-1
Simplify.
a=2 a=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}