Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}+12a=15
Multiply both sides of the equation by 5.
5a^{2}+12a-15=0
Subtract 15 from both sides.
a=\frac{-12±\sqrt{12^{2}-4\times 5\left(-15\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-12±\sqrt{144-4\times 5\left(-15\right)}}{2\times 5}
Square 12.
a=\frac{-12±\sqrt{144-20\left(-15\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-12±\sqrt{144+300}}{2\times 5}
Multiply -20 times -15.
a=\frac{-12±\sqrt{444}}{2\times 5}
Add 144 to 300.
a=\frac{-12±2\sqrt{111}}{2\times 5}
Take the square root of 444.
a=\frac{-12±2\sqrt{111}}{10}
Multiply 2 times 5.
a=\frac{2\sqrt{111}-12}{10}
Now solve the equation a=\frac{-12±2\sqrt{111}}{10} when ± is plus. Add -12 to 2\sqrt{111}.
a=\frac{\sqrt{111}-6}{5}
Divide -12+2\sqrt{111} by 10.
a=\frac{-2\sqrt{111}-12}{10}
Now solve the equation a=\frac{-12±2\sqrt{111}}{10} when ± is minus. Subtract 2\sqrt{111} from -12.
a=\frac{-\sqrt{111}-6}{5}
Divide -12-2\sqrt{111} by 10.
a=\frac{\sqrt{111}-6}{5} a=\frac{-\sqrt{111}-6}{5}
The equation is now solved.
5a^{2}+12a=15
Multiply both sides of the equation by 5.
\frac{5a^{2}+12a}{5}=\frac{15}{5}
Divide both sides by 5.
a^{2}+\frac{12}{5}a=\frac{15}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}+\frac{12}{5}a=3
Divide 15 by 5.
a^{2}+\frac{12}{5}a+\left(\frac{6}{5}\right)^{2}=3+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{12}{5}a+\frac{36}{25}=3+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{12}{5}a+\frac{36}{25}=\frac{111}{25}
Add 3 to \frac{36}{25}.
\left(a+\frac{6}{5}\right)^{2}=\frac{111}{25}
Factor a^{2}+\frac{12}{5}a+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{6}{5}\right)^{2}}=\sqrt{\frac{111}{25}}
Take the square root of both sides of the equation.
a+\frac{6}{5}=\frac{\sqrt{111}}{5} a+\frac{6}{5}=-\frac{\sqrt{111}}{5}
Simplify.
a=\frac{\sqrt{111}-6}{5} a=\frac{-\sqrt{111}-6}{5}
Subtract \frac{6}{5} from both sides of the equation.