Skip to main content
Solve for a
Tick mark Image
Assign a
Tick mark Image

Similar Problems from Web Search

Share

a=\frac{1}{2}-\frac{1}{2}\sqrt{3}+1+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Combine -\sqrt{3} and \frac{\sqrt{3}}{2} to get -\frac{1}{2}\sqrt{3}.
a=\frac{1}{2}-\frac{1}{2}\sqrt{3}+\frac{2}{2}+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Convert 1 to fraction \frac{2}{2}.
a=\frac{1+2}{2}-\frac{1}{2}\sqrt{3}+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Since \frac{1}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}+\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)
Add 1 and 2 to get 3.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}+1^{2}-\left(\sqrt{5}\right)^{2}
Consider \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}+1-\left(\sqrt{5}\right)^{2}
Calculate 1 to the power of 2 and get 1.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}+1-5
The square of \sqrt{5} is 5.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}-4
Subtract 5 from 1 to get -4.
a=\frac{3}{2}-\frac{1}{2}\sqrt{3}-\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
a=\frac{3-8}{2}-\frac{1}{2}\sqrt{3}
Since \frac{3}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
a=-\frac{5}{2}-\frac{1}{2}\sqrt{3}
Subtract 8 from 3 to get -5.