Solve for f
\left\{\begin{matrix}f=\frac{az_{t}+v_{1}}{u}\text{, }&u\neq 0\text{ and }z_{t}\neq 0\\f\in \mathrm{R}\text{, }&v_{1}=-az_{t}\text{ and }u=0\text{ and }z_{t}\neq 0\end{matrix}\right.
Solve for a
a=-\frac{v_{1}-fu}{z_{t}}
z_{t}\neq 0
Share
Copied to clipboard
az_{t}=uf-v_{1}
Multiply both sides of the equation by z_{t}.
uf-v_{1}=az_{t}
Swap sides so that all variable terms are on the left hand side.
uf=az_{t}+v_{1}
Add v_{1} to both sides.
\frac{uf}{u}=\frac{az_{t}+v_{1}}{u}
Divide both sides by u.
f=\frac{az_{t}+v_{1}}{u}
Dividing by u undoes the multiplication by u.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}