Solve for a, L_2, L_1, t_2, t_1
a=\frac{30}{241}\approx 0.124481328
L_{2}=15.7
L_{1}=24.1
t_{2}=6.3
t_{1}=9.1
Share
Copied to clipboard
a=\frac{15.7-24.1}{24.1\left(6.3-9.1\right)}
Consider the first equation. Insert the known values of variables into the equation.
a=\frac{-8.4}{24.1\left(6.3-9.1\right)}
Subtract 24.1 from 15.7 to get -8.4.
a=\frac{-8.4}{24.1\left(-2.8\right)}
Subtract 9.1 from 6.3 to get -2.8.
a=\frac{-8.4}{-67.48}
Multiply 24.1 and -2.8 to get -67.48.
a=\frac{-840}{-6748}
Expand \frac{-8.4}{-67.48} by multiplying both numerator and the denominator by 100.
a=\frac{30}{241}
Reduce the fraction \frac{-840}{-6748} to lowest terms by extracting and canceling out -28.
a=\frac{30}{241} L_{2}=15.7 L_{1}=24.1 t_{2}=6.3 t_{1}=9.1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}