Solve for b
\left\{\begin{matrix}b=\frac{7c}{21-a}\text{, }&c\neq 0\text{ and }a\neq 21\\b\neq 0\text{, }&c=0\text{ and }a=21\end{matrix}\right.
Solve for a
a=-\frac{7c}{b}+21
b\neq 0
Share
Copied to clipboard
ab=7\left(3b-c\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
ab=21b-7c
Use the distributive property to multiply 7 by 3b-c.
ab-21b=-7c
Subtract 21b from both sides.
\left(a-21\right)b=-7c
Combine all terms containing b.
\frac{\left(a-21\right)b}{a-21}=-\frac{7c}{a-21}
Divide both sides by a-21.
b=-\frac{7c}{a-21}
Dividing by a-21 undoes the multiplication by a-21.
b=-\frac{7c}{a-21}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}