a = \frac { \frac { 7 } { 5 } } { 2 } + \frac { 1,5 } { \frac { 9 } { 2 } } - \frac { \frac { 3 } { 4 } } { \frac { 2,5 } { 7 } }
Solve for a
a=-\frac{16}{15}\approx -1,066666667
Assign a
a≔-\frac{16}{15}
Share
Copied to clipboard
a=\frac{7}{5\times 2}+\frac{1,5}{\frac{9}{2}}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Express \frac{\frac{7}{5}}{2} as a single fraction.
a=\frac{7}{10}+\frac{1,5}{\frac{9}{2}}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Multiply 5 and 2 to get 10.
a=\frac{7}{10}+1,5\times \frac{2}{9}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Divide 1,5 by \frac{9}{2} by multiplying 1,5 by the reciprocal of \frac{9}{2}.
a=\frac{7}{10}+\frac{3}{2}\times \frac{2}{9}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Convert decimal number 1,5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
a=\frac{7}{10}+\frac{3\times 2}{2\times 9}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Multiply \frac{3}{2} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
a=\frac{7}{10}+\frac{3}{9}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Cancel out 2 in both numerator and denominator.
a=\frac{7}{10}+\frac{1}{3}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
a=\frac{21}{30}+\frac{10}{30}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Least common multiple of 10 and 3 is 30. Convert \frac{7}{10} and \frac{1}{3} to fractions with denominator 30.
a=\frac{21+10}{30}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Since \frac{21}{30} and \frac{10}{30} have the same denominator, add them by adding their numerators.
a=\frac{31}{30}-\frac{\frac{3}{4}}{\frac{2,5}{7}}
Add 21 and 10 to get 31.
a=\frac{31}{30}-\frac{3\times 7}{4\times 2,5}
Divide \frac{3}{4} by \frac{2,5}{7} by multiplying \frac{3}{4} by the reciprocal of \frac{2,5}{7}.
a=\frac{31}{30}-\frac{21}{4\times 2,5}
Multiply 3 and 7 to get 21.
a=\frac{31}{30}-\frac{21}{10}
Multiply 4 and 2,5 to get 10.
a=\frac{31}{30}-\frac{63}{30}
Least common multiple of 30 and 10 is 30. Convert \frac{31}{30} and \frac{21}{10} to fractions with denominator 30.
a=\frac{31-63}{30}
Since \frac{31}{30} and \frac{63}{30} have the same denominator, subtract them by subtracting their numerators.
a=\frac{-32}{30}
Subtract 63 from 31 to get -32.
a=-\frac{16}{15}
Reduce the fraction \frac{-32}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}