Solve for a
a=\frac{3p}{1-p}
p\neq 1\text{ and }p\neq 0
Solve for p
p=\frac{a}{a+3}
a\neq 0\text{ and }a\neq -3
Share
Copied to clipboard
a=pa+p\times 3
Multiply both sides of the equation by p.
a-pa=p\times 3
Subtract pa from both sides.
\left(1-p\right)a=p\times 3
Combine all terms containing a.
\left(1-p\right)a=3p
The equation is in standard form.
\frac{\left(1-p\right)a}{1-p}=\frac{3p}{1-p}
Divide both sides by -p+1.
a=\frac{3p}{1-p}
Dividing by -p+1 undoes the multiplication by -p+1.
a=pa+p\times 3
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p.
pa+p\times 3=a
Swap sides so that all variable terms are on the left hand side.
\left(a+3\right)p=a
Combine all terms containing p.
\frac{\left(a+3\right)p}{a+3}=\frac{a}{a+3}
Divide both sides by a+3.
p=\frac{a}{a+3}
Dividing by a+3 undoes the multiplication by a+3.
p=\frac{a}{a+3}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}