Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{b\left(x-c\right)}{b-x}\text{, }&x\neq b\text{ and }b\neq 0\\a\in \mathrm{C}\text{, }&x=c\text{ and }b=c\text{ and }c\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{b\left(x-c\right)}{b-x}\text{, }&x\neq b\text{ and }b\neq 0\\a\in \mathrm{R}\text{, }&x=c\text{ and }b=c\text{ and }c\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax}{-x+c-a}\text{, }&x\neq 0\text{ and }a\neq 0\text{ and }a\neq c-x\\b\neq 0\text{, }&\left(a=0\text{ and }x=c\right)\text{ or }\left(a=c\text{ and }x=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
b\left(a+x\right)-ax=cb
Multiply both sides of the equation by b.
ba+bx-ax=cb
Use the distributive property to multiply b by a+x.
ba-ax=cb-bx
Subtract bx from both sides.
\left(b-x\right)a=cb-bx
Combine all terms containing a.
\left(b-x\right)a=bc-bx
The equation is in standard form.
\frac{\left(b-x\right)a}{b-x}=\frac{b\left(c-x\right)}{b-x}
Divide both sides by b-x.
a=\frac{b\left(c-x\right)}{b-x}
Dividing by b-x undoes the multiplication by b-x.
b\left(a+x\right)-ax=cb
Multiply both sides of the equation by b.
ba+bx-ax=cb
Use the distributive property to multiply b by a+x.
ba-ax=cb-bx
Subtract bx from both sides.
\left(b-x\right)a=cb-bx
Combine all terms containing a.
\left(b-x\right)a=bc-bx
The equation is in standard form.
\frac{\left(b-x\right)a}{b-x}=\frac{b\left(c-x\right)}{b-x}
Divide both sides by b-x.
a=\frac{b\left(c-x\right)}{b-x}
Dividing by b-x undoes the multiplication by b-x.
b\left(a+x\right)-ax=cb
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
ba+bx-ax=cb
Use the distributive property to multiply b by a+x.
ba+bx-ax-cb=0
Subtract cb from both sides.
ba+bx-cb=ax
Add ax to both sides. Anything plus zero gives itself.
\left(a+x-c\right)b=ax
Combine all terms containing b.
\left(x+a-c\right)b=ax
The equation is in standard form.
\frac{\left(x+a-c\right)b}{x+a-c}=\frac{ax}{x+a-c}
Divide both sides by x+a-c.
b=\frac{ax}{x+a-c}
Dividing by x+a-c undoes the multiplication by x+a-c.
b=\frac{ax}{x+a-c}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}