Solve for m (complex solution)
\left\{\begin{matrix}\\m=-\left(a+2\right)\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&a=-1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=-\left(a+2\right)\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&a=-1\end{matrix}\right.
Solve for a
a=-1
a=-\left(m+2\right)
Quiz
Linear Equation
5 problems similar to:
a + m + 2 = - ( a + m ) ^ { 2 } + ( m - 2 ) ( a + m ) + 2 m
Share
Copied to clipboard
a+m+2=-\left(a^{2}+2am+m^{2}\right)+\left(m-2\right)\left(a+m\right)+2m
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+m\right)^{2}.
a+m+2=-a^{2}-2am-m^{2}+\left(m-2\right)\left(a+m\right)+2m
To find the opposite of a^{2}+2am+m^{2}, find the opposite of each term.
a+m+2=-a^{2}-2am-m^{2}+ma+m^{2}-2a-2m+2m
Use the distributive property to multiply m-2 by a+m.
a+m+2=-a^{2}-am-m^{2}+m^{2}-2a-2m+2m
Combine -2am and ma to get -am.
a+m+2=-a^{2}-am-2a-2m+2m
Combine -m^{2} and m^{2} to get 0.
a+m+2=-a^{2}-am-2a
Combine -2m and 2m to get 0.
a+m+2+am=-a^{2}-2a
Add am to both sides.
m+2+am=-a^{2}-2a-a
Subtract a from both sides.
m+2+am=-a^{2}-3a
Combine -2a and -a to get -3a.
m+am=-a^{2}-3a-2
Subtract 2 from both sides.
\left(1+a\right)m=-a^{2}-3a-2
Combine all terms containing m.
\left(a+1\right)m=-a^{2}-3a-2
The equation is in standard form.
\frac{\left(a+1\right)m}{a+1}=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Divide both sides by 1+a.
m=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
m=-\left(a+2\right)
Divide -\left(1+a\right)\left(2+a\right) by 1+a.
a+m+2=-\left(a^{2}+2am+m^{2}\right)+\left(m-2\right)\left(a+m\right)+2m
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+m\right)^{2}.
a+m+2=-a^{2}-2am-m^{2}+\left(m-2\right)\left(a+m\right)+2m
To find the opposite of a^{2}+2am+m^{2}, find the opposite of each term.
a+m+2=-a^{2}-2am-m^{2}+ma+m^{2}-2a-2m+2m
Use the distributive property to multiply m-2 by a+m.
a+m+2=-a^{2}-am-m^{2}+m^{2}-2a-2m+2m
Combine -2am and ma to get -am.
a+m+2=-a^{2}-am-2a-2m+2m
Combine -m^{2} and m^{2} to get 0.
a+m+2=-a^{2}-am-2a
Combine -2m and 2m to get 0.
a+m+2+am=-a^{2}-2a
Add am to both sides.
m+2+am=-a^{2}-2a-a
Subtract a from both sides.
m+2+am=-a^{2}-3a
Combine -2a and -a to get -3a.
m+am=-a^{2}-3a-2
Subtract 2 from both sides.
\left(1+a\right)m=-a^{2}-3a-2
Combine all terms containing m.
\left(a+1\right)m=-a^{2}-3a-2
The equation is in standard form.
\frac{\left(a+1\right)m}{a+1}=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Divide both sides by 1+a.
m=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
m=-\left(a+2\right)
Divide -\left(1+a\right)\left(2+a\right) by 1+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}