Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for m
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a+m+2=-\left(a^{2}+2am+m^{2}\right)+\left(m-2\right)\left(a+m\right)+2m
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+m\right)^{2}.
a+m+2=-a^{2}-2am-m^{2}+\left(m-2\right)\left(a+m\right)+2m
To find the opposite of a^{2}+2am+m^{2}, find the opposite of each term.
a+m+2=-a^{2}-2am-m^{2}+ma+m^{2}-2a-2m+2m
Use the distributive property to multiply m-2 by a+m.
a+m+2=-a^{2}-am-m^{2}+m^{2}-2a-2m+2m
Combine -2am and ma to get -am.
a+m+2=-a^{2}-am-2a-2m+2m
Combine -m^{2} and m^{2} to get 0.
a+m+2=-a^{2}-am-2a
Combine -2m and 2m to get 0.
a+m+2+am=-a^{2}-2a
Add am to both sides.
m+2+am=-a^{2}-2a-a
Subtract a from both sides.
m+2+am=-a^{2}-3a
Combine -2a and -a to get -3a.
m+am=-a^{2}-3a-2
Subtract 2 from both sides.
\left(1+a\right)m=-a^{2}-3a-2
Combine all terms containing m.
\left(a+1\right)m=-a^{2}-3a-2
The equation is in standard form.
\frac{\left(a+1\right)m}{a+1}=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Divide both sides by 1+a.
m=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
m=-\left(a+2\right)
Divide -\left(1+a\right)\left(2+a\right) by 1+a.
a+m+2=-\left(a^{2}+2am+m^{2}\right)+\left(m-2\right)\left(a+m\right)+2m
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+m\right)^{2}.
a+m+2=-a^{2}-2am-m^{2}+\left(m-2\right)\left(a+m\right)+2m
To find the opposite of a^{2}+2am+m^{2}, find the opposite of each term.
a+m+2=-a^{2}-2am-m^{2}+ma+m^{2}-2a-2m+2m
Use the distributive property to multiply m-2 by a+m.
a+m+2=-a^{2}-am-m^{2}+m^{2}-2a-2m+2m
Combine -2am and ma to get -am.
a+m+2=-a^{2}-am-2a-2m+2m
Combine -m^{2} and m^{2} to get 0.
a+m+2=-a^{2}-am-2a
Combine -2m and 2m to get 0.
a+m+2+am=-a^{2}-2a
Add am to both sides.
m+2+am=-a^{2}-2a-a
Subtract a from both sides.
m+2+am=-a^{2}-3a
Combine -2a and -a to get -3a.
m+am=-a^{2}-3a-2
Subtract 2 from both sides.
\left(1+a\right)m=-a^{2}-3a-2
Combine all terms containing m.
\left(a+1\right)m=-a^{2}-3a-2
The equation is in standard form.
\frac{\left(a+1\right)m}{a+1}=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Divide both sides by 1+a.
m=-\frac{\left(a+1\right)\left(a+2\right)}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
m=-\left(a+2\right)
Divide -\left(1+a\right)\left(2+a\right) by 1+a.