Solve for a
a=-\frac{c}{1-4c}
c\neq \frac{1}{4}
Solve for c
c=-\frac{a}{1-4a}
a\neq \frac{1}{4}
Share
Copied to clipboard
a+c-4ac=0
Subtract 4ac from both sides.
a-4ac=-c
Subtract c from both sides. Anything subtracted from zero gives its negation.
\left(1-4c\right)a=-c
Combine all terms containing a.
\frac{\left(1-4c\right)a}{1-4c}=-\frac{c}{1-4c}
Divide both sides by 1-4c.
a=-\frac{c}{1-4c}
Dividing by 1-4c undoes the multiplication by 1-4c.
a+c-4ac=0
Subtract 4ac from both sides.
c-4ac=-a
Subtract a from both sides. Anything subtracted from zero gives its negation.
\left(1-4a\right)c=-a
Combine all terms containing c.
\frac{\left(1-4a\right)c}{1-4a}=-\frac{a}{1-4a}
Divide both sides by 1-4a.
c=-\frac{a}{1-4a}
Dividing by 1-4a undoes the multiplication by 1-4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}