Evaluate
-3\left(1-a\right)\left(a-b\right)+a+b
Expand
3a^{2}-3ab-2a+4b
Share
Copied to clipboard
a+b-3\left(a-b\right)\left(1-a\right)
Multiply -1 and 3 to get -3.
a+b+\left(-3a+3b\right)\left(1-a\right)
Use the distributive property to multiply -3 by a-b.
a+b-3a+3a^{2}+3b-3ba
Apply the distributive property by multiplying each term of -3a+3b by each term of 1-a.
-2a+b+3a^{2}+3b-3ba
Combine a and -3a to get -2a.
-2a+4b+3a^{2}-3ba
Combine b and 3b to get 4b.
a+b-3\left(a-b\right)\left(1-a\right)
Multiply -1 and 3 to get -3.
a+b+\left(-3a+3b\right)\left(1-a\right)
Use the distributive property to multiply -3 by a-b.
a+b-3a+3a^{2}+3b-3ba
Apply the distributive property by multiplying each term of -3a+3b by each term of 1-a.
-2a+b+3a^{2}+3b-3ba
Combine a and -3a to get -2a.
-2a+4b+3a^{2}-3ba
Combine b and 3b to get 4b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}