Solve for b
b=-\frac{\sqrt{3}a}{3}+\frac{2\sqrt{3}}{3}-1
Solve for a
a=-\sqrt{3}b+2-\sqrt{3}
Share
Copied to clipboard
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}-1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)^{2}}{2}
Multiply \sqrt{3}-1 and \sqrt{3}-1 to get \left(\sqrt{3}-1\right)^{2}.
a+b\sqrt{3}=\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
a+b\sqrt{3}=\frac{3-2\sqrt{3}+1}{2}
The square of \sqrt{3} is 3.
a+b\sqrt{3}=\frac{4-2\sqrt{3}}{2}
Add 3 and 1 to get 4.
a+b\sqrt{3}=2-\sqrt{3}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
b\sqrt{3}=2-\sqrt{3}-a
Subtract a from both sides.
\sqrt{3}b=-a+2-\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+2-\sqrt{3}\right)}{3}
Divide 2-\sqrt{3}-a by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}