Solve for a
a=-\frac{b+3}{1-b}
b\neq 1
Solve for b
b=-\frac{a+3}{1-a}
a\neq 1
Share
Copied to clipboard
a+b-ab=-3
Subtract ab from both sides.
a-ab=-3-b
Subtract b from both sides.
\left(1-b\right)a=-3-b
Combine all terms containing a.
\left(1-b\right)a=-b-3
The equation is in standard form.
\frac{\left(1-b\right)a}{1-b}=\frac{-b-3}{1-b}
Divide both sides by -b+1.
a=\frac{-b-3}{1-b}
Dividing by -b+1 undoes the multiplication by -b+1.
a=-\frac{b+3}{1-b}
Divide -3-b by -b+1.
a+b-ab=-3
Subtract ab from both sides.
b-ab=-3-a
Subtract a from both sides.
\left(1-a\right)b=-3-a
Combine all terms containing b.
\left(1-a\right)b=-a-3
The equation is in standard form.
\frac{\left(1-a\right)b}{1-a}=\frac{-a-3}{1-a}
Divide both sides by 1-a.
b=\frac{-a-3}{1-a}
Dividing by 1-a undoes the multiplication by 1-a.
b=-\frac{a+3}{1-a}
Divide -3-a by 1-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}