Solve for Y
Y=\frac{9\left(x-50\right)^{3}}{100}+15
Solve for x (complex solution)
x=\sqrt[3]{\frac{100Y}{9}-\frac{500}{3}}+50
x=e^{\frac{i\times 4\pi }{3}}\sqrt[3]{\frac{100Y}{9}-\frac{500}{3}}+50
x=e^{\frac{i\times 2\pi }{3}}\sqrt[3]{\frac{100Y}{9}-\frac{500}{3}}+50
Solve for x
x=\sqrt[3]{\frac{100Y}{9}-\frac{500}{3}}+50
Graph
Share
Copied to clipboard
Y=0.09\left(x^{3}-150x^{2}+7500x-125000\right)+15
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-50\right)^{3}.
Y=0.09x^{3}-13.5x^{2}+675x-11250+15
Use the distributive property to multiply 0.09 by x^{3}-150x^{2}+7500x-125000.
Y=0.09x^{3}-13.5x^{2}+675x-11235
Add -11250 and 15 to get -11235.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}