Solve for I (complex solution)
\left\{\begin{matrix}I=\frac{W}{Ut}\text{, }&t\neq 0\text{ and }U\neq 0\\I\in \mathrm{C}\text{, }&\left(t=0\text{ or }U=0\right)\text{ and }W=0\end{matrix}\right.
Solve for U (complex solution)
\left\{\begin{matrix}U=\frac{W}{It}\text{, }&t\neq 0\text{ and }I\neq 0\\U\in \mathrm{C}\text{, }&\left(t=0\text{ or }I=0\right)\text{ and }W=0\end{matrix}\right.
Solve for I
\left\{\begin{matrix}I=\frac{W}{Ut}\text{, }&t\neq 0\text{ and }U\neq 0\\I\in \mathrm{R}\text{, }&\left(t=0\text{ or }U=0\right)\text{ and }W=0\end{matrix}\right.
Solve for U
\left\{\begin{matrix}U=\frac{W}{It}\text{, }&t\neq 0\text{ and }I\neq 0\\U\in \mathrm{R}\text{, }&\left(t=0\text{ or }I=0\right)\text{ and }W=0\end{matrix}\right.
Share
Copied to clipboard
UIt=W
Swap sides so that all variable terms are on the left hand side.
UtI=W
The equation is in standard form.
\frac{UtI}{Ut}=\frac{W}{Ut}
Divide both sides by Ut.
I=\frac{W}{Ut}
Dividing by Ut undoes the multiplication by Ut.
UIt=W
Swap sides so that all variable terms are on the left hand side.
ItU=W
The equation is in standard form.
\frac{ItU}{It}=\frac{W}{It}
Divide both sides by It.
U=\frac{W}{It}
Dividing by It undoes the multiplication by It.
UIt=W
Swap sides so that all variable terms are on the left hand side.
UtI=W
The equation is in standard form.
\frac{UtI}{Ut}=\frac{W}{Ut}
Divide both sides by Ut.
I=\frac{W}{Ut}
Dividing by Ut undoes the multiplication by Ut.
UIt=W
Swap sides so that all variable terms are on the left hand side.
ItU=W
The equation is in standard form.
\frac{ItU}{It}=\frac{W}{It}
Divide both sides by It.
U=\frac{W}{It}
Dividing by It undoes the multiplication by It.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}