Solve for a
\left\{\begin{matrix}a=-\frac{28+4c-W}{c+7}\text{, }&c\neq -7\\a\in \mathrm{R}\text{, }&W=0\text{ and }c=-7\end{matrix}\right.
Solve for W
W=\left(a+4\right)\left(c+7\right)
Share
Copied to clipboard
W=ac+7a+4c+28
Use the distributive property to multiply a+4 by c+7.
ac+7a+4c+28=W
Swap sides so that all variable terms are on the left hand side.
ac+7a+28=W-4c
Subtract 4c from both sides.
ac+7a=W-4c-28
Subtract 28 from both sides.
\left(c+7\right)a=W-4c-28
Combine all terms containing a.
\frac{\left(c+7\right)a}{c+7}=\frac{W-4c-28}{c+7}
Divide both sides by c+7.
a=\frac{W-4c-28}{c+7}
Dividing by c+7 undoes the multiplication by c+7.
W=ac+7a+4c+28
Use the distributive property to multiply a+4 by c+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}