Skip to main content
Solve for V_2
Tick mark Image

Similar Problems from Web Search

Share

V_{2}^{2}=1.44+4\left(0.43-\frac{3}{20}\right)
Multiply 2 and 2 to get 4.
V_{2}^{2}=1.44+4\times \frac{7}{25}
Subtract \frac{3}{20} from 0.43 to get \frac{7}{25}.
V_{2}^{2}=1.44+\frac{28}{25}
Multiply 4 and \frac{7}{25} to get \frac{28}{25}.
V_{2}^{2}=\frac{64}{25}
Add 1.44 and \frac{28}{25} to get \frac{64}{25}.
V_{2}^{2}-\frac{64}{25}=0
Subtract \frac{64}{25} from both sides.
25V_{2}^{2}-64=0
Multiply both sides by 25.
\left(5V_{2}-8\right)\left(5V_{2}+8\right)=0
Consider 25V_{2}^{2}-64. Rewrite 25V_{2}^{2}-64 as \left(5V_{2}\right)^{2}-8^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
V_{2}=\frac{8}{5} V_{2}=-\frac{8}{5}
To find equation solutions, solve 5V_{2}-8=0 and 5V_{2}+8=0.
V_{2}^{2}=1.44+4\left(0.43-\frac{3}{20}\right)
Multiply 2 and 2 to get 4.
V_{2}^{2}=1.44+4\times \frac{7}{25}
Subtract \frac{3}{20} from 0.43 to get \frac{7}{25}.
V_{2}^{2}=1.44+\frac{28}{25}
Multiply 4 and \frac{7}{25} to get \frac{28}{25}.
V_{2}^{2}=\frac{64}{25}
Add 1.44 and \frac{28}{25} to get \frac{64}{25}.
V_{2}=\frac{8}{5} V_{2}=-\frac{8}{5}
Take the square root of both sides of the equation.
V_{2}^{2}=1.44+4\left(0.43-\frac{3}{20}\right)
Multiply 2 and 2 to get 4.
V_{2}^{2}=1.44+4\times \frac{7}{25}
Subtract \frac{3}{20} from 0.43 to get \frac{7}{25}.
V_{2}^{2}=1.44+\frac{28}{25}
Multiply 4 and \frac{7}{25} to get \frac{28}{25}.
V_{2}^{2}=\frac{64}{25}
Add 1.44 and \frac{28}{25} to get \frac{64}{25}.
V_{2}^{2}-\frac{64}{25}=0
Subtract \frac{64}{25} from both sides.
V_{2}=\frac{0±\sqrt{0^{2}-4\left(-\frac{64}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{64}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
V_{2}=\frac{0±\sqrt{-4\left(-\frac{64}{25}\right)}}{2}
Square 0.
V_{2}=\frac{0±\sqrt{\frac{256}{25}}}{2}
Multiply -4 times -\frac{64}{25}.
V_{2}=\frac{0±\frac{16}{5}}{2}
Take the square root of \frac{256}{25}.
V_{2}=\frac{8}{5}
Now solve the equation V_{2}=\frac{0±\frac{16}{5}}{2} when ± is plus.
V_{2}=-\frac{8}{5}
Now solve the equation V_{2}=\frac{0±\frac{16}{5}}{2} when ± is minus.
V_{2}=\frac{8}{5} V_{2}=-\frac{8}{5}
The equation is now solved.