Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

V\times 12^{2}\left(\sqrt{2}\right)^{2}+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Expand \left(12\sqrt{2}\right)^{2}.
V\times 144\left(\sqrt{2}\right)^{2}+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Calculate 12 to the power of 2 and get 144.
V\times 144\times 2+\left(\frac{9\sqrt{6}}{2}\right)^{2}
The square of \sqrt{2} is 2.
V\times 288+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Multiply 144 and 2 to get 288.
V\times 288+\frac{\left(9\sqrt{6}\right)^{2}}{2^{2}}
To raise \frac{9\sqrt{6}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{V\times 288\times 2^{2}}{2^{2}}+\frac{\left(9\sqrt{6}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply V\times 288 times \frac{2^{2}}{2^{2}}.
\frac{V\times 288\times 2^{2}+\left(9\sqrt{6}\right)^{2}}{2^{2}}
Since \frac{V\times 288\times 2^{2}}{2^{2}} and \frac{\left(9\sqrt{6}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
V\times 288+\frac{9^{2}\left(\sqrt{6}\right)^{2}}{2^{2}}
Expand \left(9\sqrt{6}\right)^{2}.
V\times 288+\frac{81\left(\sqrt{6}\right)^{2}}{2^{2}}
Calculate 9 to the power of 2 and get 81.
V\times 288+\frac{81\times 6}{2^{2}}
The square of \sqrt{6} is 6.
V\times 288+\frac{486}{2^{2}}
Multiply 81 and 6 to get 486.
V\times 288+\frac{486}{4}
Calculate 2 to the power of 2 and get 4.
V\times 288+\frac{243}{2}
Reduce the fraction \frac{486}{4} to lowest terms by extracting and canceling out 2.
V\times 12^{2}\left(\sqrt{2}\right)^{2}+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Expand \left(12\sqrt{2}\right)^{2}.
V\times 144\left(\sqrt{2}\right)^{2}+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Calculate 12 to the power of 2 and get 144.
V\times 144\times 2+\left(\frac{9\sqrt{6}}{2}\right)^{2}
The square of \sqrt{2} is 2.
V\times 288+\left(\frac{9\sqrt{6}}{2}\right)^{2}
Multiply 144 and 2 to get 288.
V\times 288+\frac{\left(9\sqrt{6}\right)^{2}}{2^{2}}
To raise \frac{9\sqrt{6}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{V\times 288\times 2^{2}}{2^{2}}+\frac{\left(9\sqrt{6}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply V\times 288 times \frac{2^{2}}{2^{2}}.
\frac{V\times 288\times 2^{2}+\left(9\sqrt{6}\right)^{2}}{2^{2}}
Since \frac{V\times 288\times 2^{2}}{2^{2}} and \frac{\left(9\sqrt{6}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
V\times 288+\frac{9^{2}\left(\sqrt{6}\right)^{2}}{2^{2}}
Expand \left(9\sqrt{6}\right)^{2}.
V\times 288+\frac{81\left(\sqrt{6}\right)^{2}}{2^{2}}
Calculate 9 to the power of 2 and get 81.
V\times 288+\frac{81\times 6}{2^{2}}
The square of \sqrt{6} is 6.
V\times 288+\frac{486}{2^{2}}
Multiply 81 and 6 to get 486.
V\times 288+\frac{486}{4}
Calculate 2 to the power of 2 and get 4.
V\times 288+\frac{243}{2}
Reduce the fraction \frac{486}{4} to lowest terms by extracting and canceling out 2.