Solve for V
V=\frac{25\sqrt{6}}{3}+50\approx 70.412414523
V=-\frac{25\sqrt{6}}{3}+50\approx 29.587585477
Share
Copied to clipboard
V^{2}=625+\left(75-2V\right)^{2}
Calculate 25 to the power of 2 and get 625.
V^{2}=625+5625-300V+4V^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(75-2V\right)^{2}.
V^{2}=6250-300V+4V^{2}
Add 625 and 5625 to get 6250.
V^{2}-6250=-300V+4V^{2}
Subtract 6250 from both sides.
V^{2}-6250+300V=4V^{2}
Add 300V to both sides.
V^{2}-6250+300V-4V^{2}=0
Subtract 4V^{2} from both sides.
-3V^{2}-6250+300V=0
Combine V^{2} and -4V^{2} to get -3V^{2}.
-3V^{2}+300V-6250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
V=\frac{-300±\sqrt{300^{2}-4\left(-3\right)\left(-6250\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 300 for b, and -6250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
V=\frac{-300±\sqrt{90000-4\left(-3\right)\left(-6250\right)}}{2\left(-3\right)}
Square 300.
V=\frac{-300±\sqrt{90000+12\left(-6250\right)}}{2\left(-3\right)}
Multiply -4 times -3.
V=\frac{-300±\sqrt{90000-75000}}{2\left(-3\right)}
Multiply 12 times -6250.
V=\frac{-300±\sqrt{15000}}{2\left(-3\right)}
Add 90000 to -75000.
V=\frac{-300±50\sqrt{6}}{2\left(-3\right)}
Take the square root of 15000.
V=\frac{-300±50\sqrt{6}}{-6}
Multiply 2 times -3.
V=\frac{50\sqrt{6}-300}{-6}
Now solve the equation V=\frac{-300±50\sqrt{6}}{-6} when ± is plus. Add -300 to 50\sqrt{6}.
V=-\frac{25\sqrt{6}}{3}+50
Divide -300+50\sqrt{6} by -6.
V=\frac{-50\sqrt{6}-300}{-6}
Now solve the equation V=\frac{-300±50\sqrt{6}}{-6} when ± is minus. Subtract 50\sqrt{6} from -300.
V=\frac{25\sqrt{6}}{3}+50
Divide -300-50\sqrt{6} by -6.
V=-\frac{25\sqrt{6}}{3}+50 V=\frac{25\sqrt{6}}{3}+50
The equation is now solved.
V^{2}=625+\left(75-2V\right)^{2}
Calculate 25 to the power of 2 and get 625.
V^{2}=625+5625-300V+4V^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(75-2V\right)^{2}.
V^{2}=6250-300V+4V^{2}
Add 625 and 5625 to get 6250.
V^{2}+300V=6250+4V^{2}
Add 300V to both sides.
V^{2}+300V-4V^{2}=6250
Subtract 4V^{2} from both sides.
-3V^{2}+300V=6250
Combine V^{2} and -4V^{2} to get -3V^{2}.
\frac{-3V^{2}+300V}{-3}=\frac{6250}{-3}
Divide both sides by -3.
V^{2}+\frac{300}{-3}V=\frac{6250}{-3}
Dividing by -3 undoes the multiplication by -3.
V^{2}-100V=\frac{6250}{-3}
Divide 300 by -3.
V^{2}-100V=-\frac{6250}{3}
Divide 6250 by -3.
V^{2}-100V+\left(-50\right)^{2}=-\frac{6250}{3}+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
V^{2}-100V+2500=-\frac{6250}{3}+2500
Square -50.
V^{2}-100V+2500=\frac{1250}{3}
Add -\frac{6250}{3} to 2500.
\left(V-50\right)^{2}=\frac{1250}{3}
Factor V^{2}-100V+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(V-50\right)^{2}}=\sqrt{\frac{1250}{3}}
Take the square root of both sides of the equation.
V-50=\frac{25\sqrt{6}}{3} V-50=-\frac{25\sqrt{6}}{3}
Simplify.
V=\frac{25\sqrt{6}}{3}+50 V=-\frac{25\sqrt{6}}{3}+50
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}