Evaluate (complex solution)
V=\frac{P_{1}d^{3}}{6}\text{ and }\frac{P_{1}d^{3}}{6}=\frac{22}{7}
Solve for d
d=\frac{7^{\frac{2}{3}}\sqrt[3]{\frac{132}{P_{1}}}}{7}
V=\frac{22}{7}\text{ and }P_{1}\neq 0
Solve for V
V = \frac{22}{7} = 3\frac{1}{7} = 3.142857142857143
P_{1}=\frac{132}{7d^{3}}\text{ and }d\neq 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}