Solve for E
E=IR_{s}+U
Solve for I
\left\{\begin{matrix}I=\frac{E-U}{R_{s}}\text{, }&R_{s}\neq 0\\I\in \mathrm{R}\text{, }&U=E\text{ and }R_{s}=0\end{matrix}\right.
Share
Copied to clipboard
E-IR_{s}=U
Swap sides so that all variable terms are on the left hand side.
E=U+IR_{s}
Add IR_{s} to both sides.
E-IR_{s}=U
Swap sides so that all variable terms are on the left hand side.
-IR_{s}=U-E
Subtract E from both sides.
\left(-R_{s}\right)I=U-E
The equation is in standard form.
\frac{\left(-R_{s}\right)I}{-R_{s}}=\frac{U-E}{-R_{s}}
Divide both sides by -R_{s}.
I=\frac{U-E}{-R_{s}}
Dividing by -R_{s} undoes the multiplication by -R_{s}.
I=-\frac{U-E}{R_{s}}
Divide U-E by -R_{s}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}