Solve for U
U = \frac{96}{25} = 3\frac{21}{25} = 3.84
Assign U
U≔\frac{96}{25}
Share
Copied to clipboard
U=\frac{16}{25}-4\left(-\frac{4}{5}\right)
Calculate -\frac{4}{5} to the power of 2 and get \frac{16}{25}.
U=\frac{16}{25}-\frac{4\left(-4\right)}{5}
Express 4\left(-\frac{4}{5}\right) as a single fraction.
U=\frac{16}{25}-\frac{-16}{5}
Multiply 4 and -4 to get -16.
U=\frac{16}{25}-\left(-\frac{16}{5}\right)
Fraction \frac{-16}{5} can be rewritten as -\frac{16}{5} by extracting the negative sign.
U=\frac{16}{25}+\frac{16}{5}
The opposite of -\frac{16}{5} is \frac{16}{5}.
U=\frac{16}{25}+\frac{80}{25}
Least common multiple of 25 and 5 is 25. Convert \frac{16}{25} and \frac{16}{5} to fractions with denominator 25.
U=\frac{16+80}{25}
Since \frac{16}{25} and \frac{80}{25} have the same denominator, add them by adding their numerators.
U=\frac{96}{25}
Add 16 and 80 to get 96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}