Evaluate
T-2
Differentiate w.r.t. T
1
Share
Copied to clipboard
T-5+6\times \left(\frac{1}{\sqrt{2}}\right)^{2}
Multiply 10 and \frac{1}{2} to get 5.
T-5+6\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
T-5+6\times \left(\frac{\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
T-5+6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
T-5+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
Express 6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{\left(T-5\right)\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply T-5 times \frac{2^{2}}{2^{2}}.
\frac{\left(T-5\right)\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}}
Since \frac{\left(T-5\right)\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
T-\frac{5\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2^{2}}{2^{2}}.
T+\frac{-5\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}}
Since -\frac{5\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
T-5+\frac{6\times 2}{2^{2}}
The square of \sqrt{2} is 2.
T-5+\frac{12}{2^{2}}
Multiply 6 and 2 to get 12.
T-5+\frac{12}{4}
Calculate 2 to the power of 2 and get 4.
T-5+3
Divide 12 by 4 to get 3.
T-2
Add -5 and 3 to get -2.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{1}{\sqrt{2}}\right)^{2})
Multiply 10 and \frac{1}{2} to get 5.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2})
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{\sqrt{2}}{2}\right)^{2})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}})
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
Express 6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}T}(\frac{\left(T-5\right)\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply T-5 times \frac{2^{2}}{2^{2}}.
\frac{\mathrm{d}}{\mathrm{d}T}(\frac{\left(T-5\right)\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Since \frac{\left(T-5\right)\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}T}(T-\frac{5\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2^{2}}{2^{2}}.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-5\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Since -\frac{5\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-5\times 4+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Multiply -5 and 4 to get -20.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+6\times 2}{2^{2}})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+12}{2^{2}})
Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-8}{2^{2}})
Add -20 and 12 to get -8.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-8}{4})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}T}(T-2)
Divide -8 by 4 to get -2.
T^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
T^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}