Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. T
Tick mark Image

Similar Problems from Web Search

Share

T-5+6\times \left(\frac{1}{\sqrt{2}}\right)^{2}
Multiply 10 and \frac{1}{2} to get 5.
T-5+6\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
T-5+6\times \left(\frac{\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
T-5+6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
T-5+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
Express 6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{\left(T-5\right)\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply T-5 times \frac{2^{2}}{2^{2}}.
\frac{\left(T-5\right)\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}}
Since \frac{\left(T-5\right)\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
T-\frac{5\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2^{2}}{2^{2}}.
T+\frac{-5\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}}
Since -\frac{5\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
T-5+\frac{6\times 2}{2^{2}}
The square of \sqrt{2} is 2.
T-5+\frac{12}{2^{2}}
Multiply 6 and 2 to get 12.
T-5+\frac{12}{4}
Calculate 2 to the power of 2 and get 4.
T-5+3
Divide 12 by 4 to get 3.
T-2
Add -5 and 3 to get -2.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{1}{\sqrt{2}}\right)^{2})
Multiply 10 and \frac{1}{2} to get 5.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2})
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \left(\frac{\sqrt{2}}{2}\right)^{2})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}})
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}T}(T-5+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
Express 6\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}T}(\frac{\left(T-5\right)\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply T-5 times \frac{2^{2}}{2^{2}}.
\frac{\mathrm{d}}{\mathrm{d}T}(\frac{\left(T-5\right)\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Since \frac{\left(T-5\right)\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}T}(T-\frac{5\times 2^{2}}{2^{2}}+\frac{6\left(\sqrt{2}\right)^{2}}{2^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{2^{2}}{2^{2}}.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-5\times 2^{2}+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Since -\frac{5\times 2^{2}}{2^{2}} and \frac{6\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-5\times 4+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+6\left(\sqrt{2}\right)^{2}}{2^{2}})
Multiply -5 and 4 to get -20.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+6\times 2}{2^{2}})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-20+12}{2^{2}})
Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-8}{2^{2}})
Add -20 and 12 to get -8.
\frac{\mathrm{d}}{\mathrm{d}T}(T+\frac{-8}{4})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}T}(T-2)
Divide -8 by 4 to get -2.
T^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
T^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.