Solve for x
x=\frac{\left(T+1\right)^{2}-5}{4}
T+1\geq 0
Solve for T (complex solution)
T=\sqrt{4x+5}-1
Solve for x (complex solution)
x=\frac{\left(T+1\right)^{2}-5}{4}
T=-1\text{ or }arg(T+1)<\pi
Solve for T
T=\sqrt{4x+5}-1
x\geq -\frac{5}{4}
Graph
Share
Copied to clipboard
-\sqrt{4x+5}+T-T=-1-T
Subtract T from both sides of the equation.
-\sqrt{4x+5}=-1-T
Subtracting T from itself leaves 0.
-\sqrt{4x+5}=-T-1
Subtract T from -1.
\frac{-\sqrt{4x+5}}{-1}=\frac{-T-1}{-1}
Divide both sides by -1.
\sqrt{4x+5}=\frac{-T-1}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{4x+5}=T+1
Divide -1-T by -1.
4x+5=\left(T+1\right)^{2}
Square both sides of the equation.
4x+5-5=\left(T+1\right)^{2}-5
Subtract 5 from both sides of the equation.
4x=\left(T+1\right)^{2}-5
Subtracting 5 from itself leaves 0.
\frac{4x}{4}=\frac{\left(T+1\right)^{2}-5}{4}
Divide both sides by 4.
x=\frac{\left(T+1\right)^{2}-5}{4}
Dividing by 4 undoes the multiplication by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}