Solve for D
\left\{\begin{matrix}D=\frac{T^{3}}{a+2}\text{, }&a\neq -2\\D\in \mathrm{R}\text{, }&T=0\text{ and }a=-2\end{matrix}\right.
Solve for T
T=\sqrt[3]{D\left(a+2\right)}
Share
Copied to clipboard
T^{3}=2D+Da
Use the distributive property to multiply D by 2+a.
2D+Da=T^{3}
Swap sides so that all variable terms are on the left hand side.
\left(2+a\right)D=T^{3}
Combine all terms containing D.
\left(a+2\right)D=T^{3}
The equation is in standard form.
\frac{\left(a+2\right)D}{a+2}=\frac{T^{3}}{a+2}
Divide both sides by 2+a.
D=\frac{T^{3}}{a+2}
Dividing by 2+a undoes the multiplication by 2+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}