Solve for E
E=-\frac{T}{2\pi }+z
Solve for T
T=2\pi \left(z-E\right)
Share
Copied to clipboard
T = 2 * \pi {(z - E)}
Substitute 2 * \pi for \tau.
T=2\pi z-2\pi E
Use the distributive property to multiply 2\pi by z-E.
2\pi z-2\pi E=T
Swap sides so that all variable terms are on the left hand side.
-2\pi E=T-2\pi z
Subtract 2\pi z from both sides.
\left(-2\pi \right)E=T-2\pi z
The equation is in standard form.
\frac{\left(-2\pi \right)E}{-2\pi }=\frac{T-2\pi z}{-2\pi }
Divide both sides by -2\pi .
E=\frac{T-2\pi z}{-2\pi }
Dividing by -2\pi undoes the multiplication by -2\pi .
E=-\frac{T}{2\pi }+z
Divide T-2\pi z by -2\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}