Solve for T
T = \frac{25622300}{8001} = 3202\frac{3098}{8001} \approx 3202.3872016
Assign T
T≔\frac{25622300}{8001}
Quiz
Linear Equation
5 problems similar to:
T = 300+ \frac{ \frac{ 6 }{ 0.84 \cdot 0.508 } -1 }{ 0.0045 }
Share
Copied to clipboard
T=300+\frac{\frac{6}{0.42672}-1}{0.0045}
Multiply 0.84 and 0.508 to get 0.42672.
T=300+\frac{\frac{600000}{42672}-1}{0.0045}
Expand \frac{6}{0.42672} by multiplying both numerator and the denominator by 100000.
T=300+\frac{\frac{12500}{889}-1}{0.0045}
Reduce the fraction \frac{600000}{42672} to lowest terms by extracting and canceling out 48.
T=300+\frac{\frac{12500}{889}-\frac{889}{889}}{0.0045}
Convert 1 to fraction \frac{889}{889}.
T=300+\frac{\frac{12500-889}{889}}{0.0045}
Since \frac{12500}{889} and \frac{889}{889} have the same denominator, subtract them by subtracting their numerators.
T=300+\frac{\frac{11611}{889}}{0.0045}
Subtract 889 from 12500 to get 11611.
T=300+\frac{11611}{889\times 0.0045}
Express \frac{\frac{11611}{889}}{0.0045} as a single fraction.
T=300+\frac{11611}{4.0005}
Multiply 889 and 0.0045 to get 4.0005.
T=300+\frac{116110000}{40005}
Expand \frac{11611}{4.0005} by multiplying both numerator and the denominator by 10000.
T=300+\frac{23222000}{8001}
Reduce the fraction \frac{116110000}{40005} to lowest terms by extracting and canceling out 5.
T=\frac{2400300}{8001}+\frac{23222000}{8001}
Convert 300 to fraction \frac{2400300}{8001}.
T=\frac{2400300+23222000}{8001}
Since \frac{2400300}{8001} and \frac{23222000}{8001} have the same denominator, add them by adding their numerators.
T=\frac{25622300}{8001}
Add 2400300 and 23222000 to get 25622300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}