Skip to main content
Solve for S_1
Tick mark Image

Similar Problems from Web Search

Share

8S_{1}^{2}=93-\frac{25^{2}}{8}
Multiply both sides of the equation by 8.
8S_{1}^{2}=93-\frac{625}{8}
Calculate 25 to the power of 2 and get 625.
8S_{1}^{2}=\frac{119}{8}
Subtract \frac{625}{8} from 93 to get \frac{119}{8}.
S_{1}^{2}=\frac{\frac{119}{8}}{8}
Divide both sides by 8.
S_{1}^{2}=\frac{119}{8\times 8}
Express \frac{\frac{119}{8}}{8} as a single fraction.
S_{1}^{2}=\frac{119}{64}
Multiply 8 and 8 to get 64.
S_{1}=\frac{\sqrt{119}}{8} S_{1}=-\frac{\sqrt{119}}{8}
Take the square root of both sides of the equation.
8S_{1}^{2}=93-\frac{25^{2}}{8}
Multiply both sides of the equation by 8.
8S_{1}^{2}=93-\frac{625}{8}
Calculate 25 to the power of 2 and get 625.
8S_{1}^{2}=\frac{119}{8}
Subtract \frac{625}{8} from 93 to get \frac{119}{8}.
8S_{1}^{2}-\frac{119}{8}=0
Subtract \frac{119}{8} from both sides.
S_{1}=\frac{0±\sqrt{0^{2}-4\times 8\left(-\frac{119}{8}\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -\frac{119}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
S_{1}=\frac{0±\sqrt{-4\times 8\left(-\frac{119}{8}\right)}}{2\times 8}
Square 0.
S_{1}=\frac{0±\sqrt{-32\left(-\frac{119}{8}\right)}}{2\times 8}
Multiply -4 times 8.
S_{1}=\frac{0±\sqrt{476}}{2\times 8}
Multiply -32 times -\frac{119}{8}.
S_{1}=\frac{0±2\sqrt{119}}{2\times 8}
Take the square root of 476.
S_{1}=\frac{0±2\sqrt{119}}{16}
Multiply 2 times 8.
S_{1}=\frac{\sqrt{119}}{8}
Now solve the equation S_{1}=\frac{0±2\sqrt{119}}{16} when ± is plus.
S_{1}=-\frac{\sqrt{119}}{8}
Now solve the equation S_{1}=\frac{0±2\sqrt{119}}{16} when ± is minus.
S_{1}=\frac{\sqrt{119}}{8} S_{1}=-\frac{\sqrt{119}}{8}
The equation is now solved.