Solve for H
\left\{\begin{matrix}H=-W+\frac{S}{2L}\text{, }&L\neq 0\\H\in \mathrm{R}\text{, }&S=0\text{ and }L=0\end{matrix}\right.
Solve for L
\left\{\begin{matrix}L=\frac{S}{2\left(H+W\right)}\text{, }&H\neq -W\\L\in \mathrm{R}\text{, }&S=0\text{ and }H=-W\end{matrix}\right.
Share
Copied to clipboard
2LH+2LW=S
Swap sides so that all variable terms are on the left hand side.
2LH=S-2LW
Subtract 2LW from both sides.
\frac{2LH}{2L}=\frac{S-2LW}{2L}
Divide both sides by 2L.
H=\frac{S-2LW}{2L}
Dividing by 2L undoes the multiplication by 2L.
H=-W+\frac{S}{2L}
Divide -2LW+S by 2L.
2LH+2LW=S
Swap sides so that all variable terms are on the left hand side.
\left(2H+2W\right)L=S
Combine all terms containing L.
\frac{\left(2H+2W\right)L}{2H+2W}=\frac{S}{2H+2W}
Divide both sides by 2H+2W.
L=\frac{S}{2H+2W}
Dividing by 2H+2W undoes the multiplication by 2H+2W.
L=\frac{S}{2\left(H+W\right)}
Divide S by 2H+2W.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}