Solve for p
p=r-3S
Solve for S
S=\frac{r-p}{3}
Share
Copied to clipboard
S=\frac{1}{3}r-\frac{1}{3}p
Divide each term of r-p by 3 to get \frac{1}{3}r-\frac{1}{3}p.
\frac{1}{3}r-\frac{1}{3}p=S
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}p=S-\frac{1}{3}r
Subtract \frac{1}{3}r from both sides.
-\frac{1}{3}p=-\frac{r}{3}+S
The equation is in standard form.
\frac{-\frac{1}{3}p}{-\frac{1}{3}}=\frac{-\frac{r}{3}+S}{-\frac{1}{3}}
Multiply both sides by -3.
p=\frac{-\frac{r}{3}+S}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
p=r-3S
Divide S-\frac{r}{3} by -\frac{1}{3} by multiplying S-\frac{r}{3} by the reciprocal of -\frac{1}{3}.
S=\frac{1}{3}r-\frac{1}{3}p
Divide each term of r-p by 3 to get \frac{1}{3}r-\frac{1}{3}p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}