Solve for p
\left\{\begin{matrix}p=-\frac{2\left(r+2S\right)}{2S-1}\text{, }&r\neq -1\text{ and }S\neq \frac{1}{2}\\p\neq -2\text{, }&S=\frac{1}{2}\text{ and }r=-1\end{matrix}\right.
Solve for S
S=-\frac{2r-p}{2\left(p+2\right)}
p\neq -2
Share
Copied to clipboard
S\times 2\left(p+2\right)=p-2r
Variable p cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 2\left(p+2\right).
2Sp+2S\times 2=p-2r
Use the distributive property to multiply S\times 2 by p+2.
2Sp+4S=p-2r
Multiply 2 and 2 to get 4.
2Sp+4S-p=-2r
Subtract p from both sides.
2Sp-p=-2r-4S
Subtract 4S from both sides.
\left(2S-1\right)p=-2r-4S
Combine all terms containing p.
\frac{\left(2S-1\right)p}{2S-1}=\frac{-2r-4S}{2S-1}
Divide both sides by 2S-1.
p=\frac{-2r-4S}{2S-1}
Dividing by 2S-1 undoes the multiplication by 2S-1.
p=-\frac{2\left(r+2S\right)}{2S-1}
Divide -2r-4S by 2S-1.
p=-\frac{2\left(r+2S\right)}{2S-1}\text{, }p\neq -2
Variable p cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}