Solve for E
\left\{\begin{matrix}E=\frac{2S}{9ITt^{2}}\text{, }&I\neq 0\text{ and }T\neq 0\text{ and }t\neq 0\\E\in \mathrm{R}\text{, }&\left(t=0\text{ or }T=0\text{ or }I=0\right)\text{ and }S=0\end{matrix}\right.
Solve for I
\left\{\begin{matrix}I=\frac{2S}{9ETt^{2}}\text{, }&T\neq 0\text{ and }E\neq 0\text{ and }t\neq 0\\I\in \mathrm{R}\text{, }&\left(t=0\text{ or }E=0\text{ or }T=0\right)\text{ and }S=0\end{matrix}\right.
Share
Copied to clipboard
S=\frac{9}{2}t^{2}ETI
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{9}{2}t^{2}ETI=S
Swap sides so that all variable terms are on the left hand side.
\frac{9ITt^{2}}{2}E=S
The equation is in standard form.
\frac{2\times \frac{9ITt^{2}}{2}E}{9ITt^{2}}=\frac{2S}{9ITt^{2}}
Divide both sides by \frac{9}{2}t^{2}TI.
E=\frac{2S}{9ITt^{2}}
Dividing by \frac{9}{2}t^{2}TI undoes the multiplication by \frac{9}{2}t^{2}TI.
S=\frac{9}{2}t^{2}ETI
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{9}{2}t^{2}ETI=S
Swap sides so that all variable terms are on the left hand side.
\frac{9ETt^{2}}{2}I=S
The equation is in standard form.
\frac{2\times \frac{9ETt^{2}}{2}I}{9ETt^{2}}=\frac{2S}{9ETt^{2}}
Divide both sides by \frac{9}{2}t^{2}ET.
I=\frac{2S}{9ETt^{2}}
Dividing by \frac{9}{2}t^{2}ET undoes the multiplication by \frac{9}{2}t^{2}ET.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}