Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for S
Tick mark Image
Graph

Similar Problems from Web Search

Share

S=\left(\frac{1}{2}a-\frac{1}{2}b\right)xb
Use the distributive property to multiply \frac{1}{2} by a-b.
S=\left(\frac{1}{2}ax-\frac{1}{2}bx\right)b
Use the distributive property to multiply \frac{1}{2}a-\frac{1}{2}b by x.
S=\frac{1}{2}axb-\frac{1}{2}xb^{2}
Use the distributive property to multiply \frac{1}{2}ax-\frac{1}{2}bx by b.
\frac{1}{2}axb-\frac{1}{2}xb^{2}=S
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}axb=S+\frac{1}{2}xb^{2}
Add \frac{1}{2}xb^{2} to both sides.
\frac{bx}{2}a=\frac{xb^{2}}{2}+S
The equation is in standard form.
\frac{2\times \frac{bx}{2}a}{bx}=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Divide both sides by \frac{1}{2}xb.
a=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Dividing by \frac{1}{2}xb undoes the multiplication by \frac{1}{2}xb.
a=b+\frac{2S}{bx}
Divide S+\frac{xb^{2}}{2} by \frac{1}{2}xb.
S=\left(\frac{1}{2}a-\frac{1}{2}b\right)xb
Use the distributive property to multiply \frac{1}{2} by a-b.
S=\left(\frac{1}{2}ax-\frac{1}{2}bx\right)b
Use the distributive property to multiply \frac{1}{2}a-\frac{1}{2}b by x.
S=\frac{1}{2}axb-\frac{1}{2}xb^{2}
Use the distributive property to multiply \frac{1}{2}ax-\frac{1}{2}bx by b.
\frac{1}{2}axb-\frac{1}{2}xb^{2}=S
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}axb=S+\frac{1}{2}xb^{2}
Add \frac{1}{2}xb^{2} to both sides.
\frac{bx}{2}a=\frac{xb^{2}}{2}+S
The equation is in standard form.
\frac{2\times \frac{bx}{2}a}{bx}=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Divide both sides by \frac{1}{2}xb.
a=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Dividing by \frac{1}{2}xb undoes the multiplication by \frac{1}{2}xb.
a=b+\frac{2S}{bx}
Divide S+\frac{xb^{2}}{2} by \frac{1}{2}xb.