Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{xb^{2}+2S}{bx}\text{, }&b\neq 0\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(x=0\text{ or }b=0\right)\text{ and }S=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{xb^{2}+2S}{bx}\text{, }&b\neq 0\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(x=0\text{ or }b=0\right)\text{ and }S=0\end{matrix}\right.
Solve for S
S=\frac{bx\left(a-b\right)}{2}
Graph
Share
Copied to clipboard
S=\left(\frac{1}{2}a-\frac{1}{2}b\right)xb
Use the distributive property to multiply \frac{1}{2} by a-b.
S=\left(\frac{1}{2}ax-\frac{1}{2}bx\right)b
Use the distributive property to multiply \frac{1}{2}a-\frac{1}{2}b by x.
S=\frac{1}{2}axb-\frac{1}{2}xb^{2}
Use the distributive property to multiply \frac{1}{2}ax-\frac{1}{2}bx by b.
\frac{1}{2}axb-\frac{1}{2}xb^{2}=S
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}axb=S+\frac{1}{2}xb^{2}
Add \frac{1}{2}xb^{2} to both sides.
\frac{bx}{2}a=\frac{xb^{2}}{2}+S
The equation is in standard form.
\frac{2\times \frac{bx}{2}a}{bx}=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Divide both sides by \frac{1}{2}xb.
a=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Dividing by \frac{1}{2}xb undoes the multiplication by \frac{1}{2}xb.
a=b+\frac{2S}{bx}
Divide S+\frac{xb^{2}}{2} by \frac{1}{2}xb.
S=\left(\frac{1}{2}a-\frac{1}{2}b\right)xb
Use the distributive property to multiply \frac{1}{2} by a-b.
S=\left(\frac{1}{2}ax-\frac{1}{2}bx\right)b
Use the distributive property to multiply \frac{1}{2}a-\frac{1}{2}b by x.
S=\frac{1}{2}axb-\frac{1}{2}xb^{2}
Use the distributive property to multiply \frac{1}{2}ax-\frac{1}{2}bx by b.
\frac{1}{2}axb-\frac{1}{2}xb^{2}=S
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}axb=S+\frac{1}{2}xb^{2}
Add \frac{1}{2}xb^{2} to both sides.
\frac{bx}{2}a=\frac{xb^{2}}{2}+S
The equation is in standard form.
\frac{2\times \frac{bx}{2}a}{bx}=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Divide both sides by \frac{1}{2}xb.
a=\frac{2\left(\frac{xb^{2}}{2}+S\right)}{bx}
Dividing by \frac{1}{2}xb undoes the multiplication by \frac{1}{2}xb.
a=b+\frac{2S}{bx}
Divide S+\frac{xb^{2}}{2} by \frac{1}{2}xb.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}