Solve for G (complex solution)
\left\{\begin{matrix}G=\frac{RB^{2}}{R^{2}+1}\text{, }&R\neq -i\text{ and }R\neq i\\G\in \mathrm{C}\text{, }&\left(R=i\text{ or }R=-i\right)\text{ and }B=0\end{matrix}\right.
Solve for G
G=\frac{RB^{2}}{R^{2}+1}
Solve for B (complex solution)
\left\{\begin{matrix}B=-\sqrt{GR+\frac{G}{R}}\text{; }B=\sqrt{GR+\frac{G}{R}}\text{, }&R\neq 0\\B\in \mathrm{C}\text{, }&G=0\text{ and }R=0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\sqrt{GR+\frac{G}{R}}\text{; }B=-\sqrt{GR+\frac{G}{R}}\text{, }&\left(G\geq 0\text{ and }R>0\right)\text{ or }\left(G\leq 0\text{ and }R<0\right)\\B\in \mathrm{R}\text{, }&G=0\text{ and }R=0\end{matrix}\right.
Share
Copied to clipboard
R^{2}G+G-BRB=0
Multiply R and R to get R^{2}.
R^{2}G+G-B^{2}R=0
Multiply B and B to get B^{2}.
R^{2}G+G=0+B^{2}R
Add B^{2}R to both sides.
R^{2}G+G=B^{2}R
Anything plus zero gives itself.
\left(R^{2}+1\right)G=B^{2}R
Combine all terms containing G.
\left(R^{2}+1\right)G=RB^{2}
The equation is in standard form.
\frac{\left(R^{2}+1\right)G}{R^{2}+1}=\frac{RB^{2}}{R^{2}+1}
Divide both sides by R^{2}+1.
G=\frac{RB^{2}}{R^{2}+1}
Dividing by R^{2}+1 undoes the multiplication by R^{2}+1.
R^{2}G+G-BRB=0
Multiply R and R to get R^{2}.
R^{2}G+G-B^{2}R=0
Multiply B and B to get B^{2}.
R^{2}G+G=0+B^{2}R
Add B^{2}R to both sides.
R^{2}G+G=B^{2}R
Anything plus zero gives itself.
\left(R^{2}+1\right)G=B^{2}R
Combine all terms containing G.
\left(R^{2}+1\right)G=RB^{2}
The equation is in standard form.
\frac{\left(R^{2}+1\right)G}{R^{2}+1}=\frac{RB^{2}}{R^{2}+1}
Divide both sides by R^{2}+1.
G=\frac{RB^{2}}{R^{2}+1}
Dividing by R^{2}+1 undoes the multiplication by R^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}