Solve for P (complex solution)
\left\{\begin{matrix}P=\frac{799X}{10x}\text{, }&x\neq 0\\P\in \mathrm{C}\text{, }&X=0\text{ and }x=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{799X}{10x}\text{, }&x\neq 0\\P\in \mathrm{R}\text{, }&X=0\text{ and }x=0\end{matrix}\right.
Solve for X
X=\frac{10Px}{799}
Graph
Share
Copied to clipboard
xP=X\times 79.9
Subtract 0.1 from 80 to get 79.9.
xP=\frac{799X}{10}
The equation is in standard form.
\frac{xP}{x}=\frac{799X}{10x}
Divide both sides by x.
P=\frac{799X}{10x}
Dividing by x undoes the multiplication by x.
xP=X\times 79.9
Subtract 0.1 from 80 to get 79.9.
xP=\frac{799X}{10}
The equation is in standard form.
\frac{xP}{x}=\frac{799X}{10x}
Divide both sides by x.
P=\frac{799X}{10x}
Dividing by x undoes the multiplication by x.
xP=X\times 79.9
Subtract 0.1 from 80 to get 79.9.
X\times 79.9=xP
Swap sides so that all variable terms are on the left hand side.
79.9X=Px
The equation is in standard form.
\frac{79.9X}{79.9}=\frac{Px}{79.9}
Divide both sides of the equation by 79.9, which is the same as multiplying both sides by the reciprocal of the fraction.
X=\frac{Px}{79.9}
Dividing by 79.9 undoes the multiplication by 79.9.
X=\frac{10Px}{799}
Divide xP by 79.9 by multiplying xP by the reciprocal of 79.9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}